6. Quantitative Analysis in Multimodality Molecular Imaging

Organizer: Habib Zaidi

This tutorial represents a complete and balanced review of the subject having a broad scope and coverage of quantitative analysis of molecular medical images, which is growing in importance both for clinical and research applications. The seminar begins with an introduction to various medical imaging modalities followed by a detailed examination of the fundamental concepts of quantitative image analysis techniques as they are applied in diagnostic and therapeutic molecular imaging using conventional single-modality instrumentation (SPECT, PET) and dual-modality imaging devices (PET/CT, PET/MRI). It covers the entire range of molecular imaging from basic principles to various steps required for obtaining quantitatively accurate data from nuclear medicine images including data collection methods and algorithms used to correct them for physical degrading factors, and image reconstruction algorithms (analytic, iterative) as well as image processing and analysis techniques as their clinical and research applications. Impact of physical degrading factors including collimator response (in SPECT), attenuation of photons and contribution from photons scattered in the patient and partial volume effect on diagnostic quality and quantitative accuracy of medical images will be discussed. Computer implementations of dedicated software packages and their clinical and research applications are described and illustrated with some useful features and examples. Various subjective and objective quantitative assessment of image quality will be presented including well-known figures of merit. A detailed description of analytical and Monte Carlo modelling of imaging systems, the functionality of computer codes widely used and development of anthropomorphic mathematical and voxel-based phantoms will be provided together with their potential in qualitative and quantitative assessment of image quality. Prospective future applications of quantitative molecular imaging are also addressed especially its use prior to therapy for dose distribution modelling and optimisation of treatment volumes in external radiation therapy and patient-specific 3D dosimetry in targeted therapy towards the concept of image-guided radiation therapy.

Habib Zaidi, FIEEE, Geneva University Hospital

Professor Habib Zaidi is Chief physicist and head of the PET Instrumentation & Neuroimaging Laboratory at Geneva University Hospital and faculty member at the medical school of Geneva University. He is also a Professor of Medical Physics at the University of Groningen (Netherlands), Adjunct Professor of Medical Physics and Molecular Imaging at the University of Southern Denmark and visiting Professor at IAS/University Cergy-Pontoise (France). His academic accomplishments in the area of quantitative PET imaging have been well recognized by his peers and by the medical imaging community at large since he is a recipient of many awards and distinctions. Prof. Zaidi has been an invited speaker of over 130 keynote talks at an International level, has authored over 236 peer-reviewed journal articles in prominent journals and is the editor of four textbooks.