Bio-Inspired Connective Granular Jamming for a Robotic Limb

Allen Jiang, Palash Agrawal, Kaspar Althoefer, Member, IEEE,
Thrishantha Nanayakkara, Member, IEEE, Prokar Dasgupta

Abstract—Granular jamming consists of constraining a large quantity of small particles within a membrane, similar to the use of hydrostatic and muscle forces in invertebrates to stiffen their bodies. However, current works on jamming have not examined the effect of coupling particles together, akin to connective tissue in animals. We present a study which provides a comparison between coupled and decoupled granules when jammed for a dexterous robotic limb.

I. INTRODUCTION

To vary their body stiffness, invertebrates have a hydrostatic skeleton which consists of fluid-filled cavities that resist muscle contraction. These counteracting forces stiffen the body or limb [1]. Similarly, granular jamming consists of applying an external stress on loose particles [2], such as particle-filled chambers contracted by vacuum. While able to change from a soft to rigid state, the range of stiffness granular jamming can achieve is dependent on the size, shape, and material of the granules [3]. Previous studies have examined the relationship between achievable stiffness and particle properties, but only examine decoupled granules—granules which are distinct and independent. This paper presents the use of coupled granules, in which particles are linked together by a flexible strand. The bio-inspired coupling of the granules simulates the connective tissue fibers within muscles which help increase the stiffness [4]. By increasing the stiffness range of granular jamming, the usability of a flexible, variable stiffness manipulator increases as well, such as the endoscope in Fig. 1. This benefits the dexterous robotic community, as current designs lack the sufficient stiffness without the addition of external systems, such as tendons [5].

II. METHODS

To test the effect of coupling granules, two experiments (bending by 10 mm perpendicular deflection and tension by 10 mm axial stretching) were performed on a 15 mm dia by 40 mm long latex chamber. This chamber is representative of one segment of a flexible manipulator. The granules are 1.5 mm dia spheres, with the coupled granules connected via a string.

This research was funded in part by the Seventh Framework Programme of the European Commission under grant agreement 287728 in the framework of EU project STIFF-FLOP and by the National Institute for Health Research (NIHR) Biomedical Research Centre based at Guy's and St Thomas’ NHS Foundation Trust and King’s College London. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health.

A. Jiang, P. Agrawal, K. Althoefer, and T. Nanayakkara are with the Centre for Robotics Research, King’s College London, London, WC2R 2LS, UK (e-mail: allen.jiang, palash.agrawal, k.althoefer, thrish.antha@kcl.ac.uk)
P. Dasgupta is with the Department of Urology, King’s College London, London, SE1 9RT, UK (e-mail: lynne.saker@kcl.ac.uk)

*This research was funded in part by the Seventh Framework Programme of the European Commission under grant agreement 287728 in the framework of EU project STIFF-FLOP and by the National Institute for Health Research (NIHR) Biomedical Research Centre based at Guy’s and St Thomas’ NHS Foundation Trust and King’s College London. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health.

A. Jiang, P. Agrawal, K. Althoefer, and T. Nanayakkara are with the Centre for Robotics Research, King’s College London, London, WC2R 2LS, UK (e-mail: allen.jiang, palash.agrawal, k.althoefer, thrish.antha@kcl.ac.uk)
P. Dasgupta is with the Department of Urology, King’s College London, London, SE1 9RT, UK (e-mail: lynne.saker@kcl.ac.uk)

III. RESULTS

Figure 2. Results of jamming coupled and decoupled granules at atmospheric, mid, and full vacuum.

IV. CONCLUSION

Our results in Fig. 2 show coupled granules increase the bending stiffness and improve tensile hysteresis. This opens new field of research in granular jamming and bio-inspired robotics.

REFERENCES