Mini-Symposia Title:

Methods for trustworthy and reliable in-the-wild EEG recordings

Mini-Symposia Organizer Name & Affiliation:

Alex Casson. University of Manchester. UK

Mini-Symposia Speaker Name & Affiliation 1:

Alex Casson. University of Manchester. UK

Mini-Symposia Speaker Name & Affiliation 2:

W. David Hairston, US Army Research Lab

Mini-Symposia Speaker Name & Affiliation 3:

Amd Meiser. Carl von Ossietzkv University of Oldenburg. Germany

Mini-Symposia Speaker Name & Affiliation 4:

Preben Kidmose. Dept. of Engineeering. Aarhus University. Denmark

Mini-Symposia Speaker Name & Affiliation 5:

Wei Chen. Fudan University. China

Mini-Symposia Speaker Name & Affiliation 6:

Theme:

Electroencephalography (EEG) is the monitoring of a subject’s ‘brainwaves’ by placing electrodes on the scalp, and is of key use for non-invasive brain interfacing. However, typical EEG signals are very small (micro-Volts) and very easily corrupted by artefacts. Historically collecting high quality signals outside of highly controlled laboratory environments has been extremely challenging.

Overcoming these challenges necessitates highly multi-disciplinary work between system designers for long battery life electronics, signal processing engineers for artefact robust signal collection and analysis, electrode designers for easy-application systems, and neuroscientists to integrate properly with fundamental research. We propose a session to span these areas and highlight recent developments fostering the state-of-the-art in out-of-the-lab EEG. This will continue a series of sessions at EMBC since 2008:

- 2008: Towards truly wearable electroencephalography
- 2011: Reliable and trustworthy physiological signal monitoring in daily-life
- 2013: EEG monitoring brought to home: what have we achieved and the road forward
- 2016: Next generation electroencephalography recording electrodes
- 2018: Next steps in real-life brain monitoring: technologies for wearable EEG

This series has created a strong EMBC community, in a timely manner aligning with the IEEE Brain initiative.

For this year’s session we propose a focus on methods for assessing EEG electrodes and units. Even something as basic as a clear definition of signal-to-noise ratio is not clear in EEG measurements, and the interaction between the electrode-body.
Speaker 1 Synopsis

Alexander J. Casson, University of Manchester, UK

Abstract—The verification of in-the-wild EEG, where many motion artifacts are present, is intrinsically very challenging as there is no ground truth of “correct” data available in order to determine whether artifact removal techniques have been successful. Nevertheless, having confidence that good quality EEG signals are being collected is extremely important as EEG studies begin to transition out of the lab. This talk will overview how multiple verification techniques can be explored at the same time to build confidence in the overall level of performance. This will cover the development of our EEG head phantom, the use of machine learning verification techniques, and lessons learned from simultaneous EEG+motion measurements.

I. BIO

Dr Alex Casson is a Reader (Associate Professor) in the Materials, Devices and Systems division of the Department of Electrical and Electronic Engineering at the University of Manchester. His research focuses on non-invasive bioelectronic interfaces: the design and application of wearable sensors, ‘conformal sensors’ for human body monitoring, and data analysis from highly artefact prone naturalistic situations. This work is highly multi-disciplinary and he has research expertise in:

- Ultra low power microelectronic circuit design (at the discrete and fully custom microchip levels).
- Sensor signal processing for power constrained motion artefact rich environments.
- Personalised device manufacture using 3D printing and inkjet printing.

He has particular interests in precision devices for closed loop bioelectronic interventions: those which are tailored to the individual by personalised manufacturing via printing; and tailored interventions by adjusting stimulation parameters using data driven responses/outputs from real-time signal processing. Dr Casson’s ultra low power sensor work is mainly for health and wellness applications, with a strong background in EEG and transcranial current stimulation. These applications focus on both mental health situations including epilepsy, sleep disorders, stroke, Parkinson's disease and autism, and physical health/rehabilitation applications including diabetic foot ulceration.

Dr Casson gained his undergraduate degree from the University of Oxford in 2006 where he read Engineering Science specialising in Electronic Engineering (MEng). He completed his PhD from Imperial College London in 2010, winning the prize for best doctoral thesis in electrical and electronic engineering. Dr Casson worked as a research associate and research fellow at Imperial College until 2013 when he joined the faculty at the University of Manchester. He is an ambassador for the Manchester Integrating Medicine and Innovative Technology (MIMIT) scheme for systematically connecting clinicians and engineers to address unmet clinical needs. Dr Casson is currently a Senior Member of the IEEE, Fellow of the Higher Education Academy, and chair of the Institution of Engineering and Technology’s healthcare technologies network.

II. TALK SYNOPSIS

This talk will overview three complementary avenues we have been investigating for controlled EEG unit evaluation and testing. It will build upon our recently published review in this area [1].

Firstly we will overview our use of gelatin head phantoms which allow a known EEG signal to be played out and recorded. This allows comparison of the recorded and the actual EEG signal in a way which is not possible with on-person tests. We have been performing experiments on different head phantom mixtures, and how the materials used control the electrical properties of the phantom, and how these properties change over time.

Secondly, we will overview our use of machine learning approaches for verifying whether artefacts have been removed from the EEG signal successfully. In on-person measurements no measurement of the true EEG present is possible, making it difficult to know whether artefacts have been successfully (or completely) removed. We suggest that if machine learning cannot differentiate between artifact free and artifact cleaned sections of EEG data, this helps build confidence that the artifact removal process has been successful.

Finally, we will discuss concurrent measurements of EEG and motion using IMU sensors. The inclusion of a gyroscope is important, and our results suggest that EEG recordings are much more sensitive to angular movements, as measured by the gyroscope, than to linear acceleration components as measured by an accelerometer.

REFERENCES

Abstract — Many new types and designs of EEG electrodes and retaining systems have been developed to facilitate so-called “real world neuroimaging”. However, motion-related artifacts remain a problem, and to date, there is no accepted method for objectively quantifying the susceptibility of a specific material or design to artifacts. In this talk, I describe efforts to design next-generation phantom substrates and models used as a surrogate for human scalp for this purpose, as well as methods ongoing in our lab to validate the relationship between phantoms and real skin. Examples are given based on conventional wet and new generation dry electrodes.

I. BIO

W. David Hairston is a staff neuroscientist for the US Army Research Laboratory (ARL) in the Real-World soldier Quantification branch. As part of the Human Research and Engineering Directorate, he leads their research program on “Real-World Neuroimaging” (RWN), which aims to move neuroscience outside of the lab to improve human-system interactions. He has been a Science area Lead for the Cognition and Neuroergonomics Collaborative Technology alliance since 2009. Aside from developing novel neurotechnologies and de-noising approaches, much of his work addresses the challenge of establishing community-adopted methods for validating new approaches.

II. TALK SYNOPSIS

Many new methods for “dry” EEG are particularly prone to motion artifacts, especially when used in real-world scenarios. It is therefore necessary to have an objective method for evaluating the artifact susceptibility of any putative new material or design in order to assess its potential usability. Unfortunately, traditional human subjects-based comparisons are ill-posed for this situation due to their variability and lack of a ground truth baseline.

In this talk, I will describe our lab’s efforts to derive reliable phantom head surrogates which replace the human as a test fixture, in order to provide a repeatable basis of comparison, and validate it and show some examples with varying types of electrodes. Notably, in order to be useful, a proper phantom must have the necessary conductive properties, and at least approximately similar artifact behavior, to match what is observed in human skin.

Phantom head models are created using the design currently released under the Open EEG Phantom Project (https://osf.io/qrka2/). For applications requiring an internal multi-poled antenna in an internal tree-like structure. Projects focused solely on motion artifact susceptibility, which require more of a solid structure but no dipoles, use an alternative model based a rigid head-shaped “skull” that is FDM printed with a 1cm layer of surrounding conductive medium. For the conductive medium, previous work has used Vise ballistics gel with NaCl and gel powder wt % varied to tune the conductive properties. Ongoing work is exploring varied mixtures of agarose and NaCl, which is more stable at room temperature, to mimic skin-like artifact properties.

To validate the phantom, human subjects walk on a treadmill in conjunction with a Vicon motion capture system while wearing various COTS gel and dry EEG systems. Motion profiles are then recreated using a 6-dof motion platform with a phantom head model attached, with the phantom wearing the same COTS systems. Additionally EIS with the phantom materials and electrodes provides assessment of the conductive noise and signal transfer.

To date, data show that ballistics gel can easily be conductively “tuned”, with the best concentration around 0.9% NaCl and up to 35 wt % concentration to match the skin conductance. However, we find the gross scale of artifact in realistic motion to be dramatically lower than observed in humans, likely due to the low charge transfer resistance at the electrode junction. Instead, agarose gelatin appears a better choice when used with only ~0.2% NaCl concentration. Meanwhile, we have shown that with this phantom method we can quantifiably compare the base SNR, charge transfer resistance, noise frequency profile, and artifact resettling time constant for multiple types of dry and wet electrodes.

We advocate phantom devices for validating the efficacy of new electrodes or other EEG DAQ approaches, and interactions with ionic-to-electronic conductor transfer. Additionally, when used with a motion platform, they provide a baseline for motion artifact removal methods. They can also be used to characterize environmental noise and assess methods for removal of EMI from data.

Speaker 2 Synopsis

W. David Hairston, US Army Research Lab

Abstract — Many new types and designs of EEG electrodes and retaining systems have been developed to facilitate so-called “real world neuroimaging”. However, motion-related artifacts remain a problem, and to date, there is no accepted method for objectively quantifying the susceptibility of a specific material or design to artifacts. In this talk, I describe efforts to design next-generation phantom substrates and models used as a surrogate for human scalp for this purpose, as well as methods ongoing in our lab to validate the relationship between phantoms and real skin. Examples are given based on conventional wet and new generation dry electrodes.

I. BIO

W. David Hairston is a staff neuroscientist for the US Army Research Laboratory (ARL) in the Real-World soldier Quantification branch. As part of the Human Research and Engineering Directorate, he leads their research program on “Real-World Neuroimaging” (RWN), which aims to move neuroscience outside of the lab to improve human-system interactions. He has been a Science area Lead for the Cognition and Neuroergonomics Collaborative Technology alliance since 2009. Aside from developing novel neurotechnologies and de-noising approaches, much of his work addresses the challenge of establishing community-adopted methods for validating new approaches.

II. TALK SYNOPSIS

Many new methods for “dry” EEG are particularly prone to motion artifacts, especially when used in real-world scenarios. It is therefore necessary to have an objective method for evaluating the artifact susceptibility of any putative new material or design in order to assess its potential usability. Unfortunately, traditional human subjects-based comparisons are ill-posed for this situation due to their variability and lack of a ground truth baseline.

In this talk, I will describe our lab’s efforts to derive reliable phantom head surrogates which replace the human as a test fixture, in order to provide a repeatable basis of comparison, and validate it and show some examples with varying types of electrodes. Notably, in order to be useful, a proper phantom must have the necessary conductive properties, and at least approximately similar artifact behavior, to match what is observed in human skin.

Phantom head models are created using the design currently released under the Open EEG Phantom Project (https://osf.io/qrka2/). For applications requiring an internal multi-poled antenna in an internal tree-like structure. Projects focused solely on motion artifact susceptibility, which require more of a solid structure but no dipoles, use an alternative model based a rigid head-shaped “skull” that is FDM printed with a 1cm layer of surrounding conductive medium. For the conductive medium, previous work has used Vise ballistics gel with NaCl and gel powder wt % varied to tune the conductive properties. Ongoing work is exploring varied mixtures of agarose and NaCl, which is more stable at room temperature, to mimic skin-like artifact properties.

To validate the phantom, human subjects walk on a treadmill in conjunction with a Vicon motion capture system while wearing various COTS gel and dry EEG systems. Motion profiles are then recreated using a 6-dof motion platform with a phantom head model attached, with the phantom wearing the same COTS systems. Additionally EIS with the phantom materials and electrodes provides assessment of the conductive noise and signal transfer.

To date, data show that ballistics gel can easily be conductively “tuned”, with the best concentration around 0.9% NaCl and up to 35 wt % concentration to match the skin conductance. However, we find the gross scale of artifact in realistic motion to be dramatically lower than observed in humans, likely due to the low charge transfer resistance at the electrode junction. Instead, agarose gelatin appears a better choice when used with only ~0.2% NaCl concentration. Meanwhile, we have shown that with this phantom method we can quantifiably compare the base SNR, charge transfer resistance, noise frequency profile, and artifact resettling time constant for multiple types of dry and wet electrodes.

We advocate phantom devices for validating the efficacy of new electrodes or other EEG DAQ approaches, and interactions with ionic-to-electronic conductor transfer. Additionally, when used with a motion platform, they provide a baseline for motion artifact removal methods. They can also be used to characterize environmental noise and assess methods for removal of EMI from data.
Abstract— Measuring EEG “in the wild” using ear-EEG makes it necessary to employ methods that are different from those of a lab environment. Ear-EEG recordings come with a reduced number of electrodes positioned at unusual locations. Knowing to what kind of brain activity these innovative approaches are sensitive to is far from trivial and an empirical validation often is time consuming and financially expensive. In this talk, computational simulation of signals emitted by the brain and forward modeling from the source to the recording electrodes will be discussed. Throughout the talk, forward modeling will be presented as a way to shed light on what sources can be captured with a certain electrode setting. In addition, the influence of inter-individual differences in brain anatomy will be discussed. The comparison between the cEEGrid and traditional full cap EEG can be used to determine what limitations and what advantages we can expect when measuring in real life situations.

I. BIO

Arnd Meiser received his Master’s degree in 2019 from the University of Oldenburg in Cognitive Neuropsychology. Currently he is a PhD student in the Department of Psychology at the Carl von Ossietzky University of Oldenburg, Germany. He works in the “Neurophysiology of everyday life” group of Martin G. Bleichner. His research focuses on understanding the sensor–source relationship of around-the-ear EEG recordings. To gain a better understanding which neural sources ear-EEG electrodes are sensitive to he uses source modeling (forward and inverse). His work aims to advance the field of mobile ear-EEG, both by determining the optimal electrode positioning and by taking inter-individual differences in brain structure into account.

II. TALK SYNOPSIS

This talk will focus on the application of forward modeling for estimating the sensitivity of specified electrode settings (namely the cEEGrid [1]) to sources in the brain.

In the first part, an approach for simulating sources will be presented. Their forward models and topographies, including the recorded signal on the electrode sites will be discussed. A comparison between the standard high-density EEG-cap and the cEEGrid, which comes with a lower spatial coverage, but also with a better applicability in real life situations, will be made. Alternative electrode setups will be considered, including a recent publication advancing the technique of in-ear-EEG with forward modeling [2] to show the relevance of shape and placement of the cEEGrid in measuring auditory signals.

The second part of the talk will be concerned with the underlying factors that contribute to sources being more or less detectable with the cEEGrid and tie up to the distribution of the cEEGrid electrodes. This part will also include a brief outlook of what factors have to be additionally included for modeling signal detection in the future.

Finally, I will discuss the role of the individual brain anatomy on the recorded signal. Due to differences in cortical folding, the signal that originates within a specific anatomical structure may be reflected differently on the scalp level. Integrating folding and connectivity of the cortex into the placement of the few electrodes available is therefore beneficial for maximizing the signal amplitude.

I will discuss how to account for these interindividual differences when interpreting ear-EEG data.

Shown above is the result of the forward modeling of multiple simulated sources to the cEEGrid. For every point on the cortex mesh, the activity of that point was set to 1 while the rest was set to 0. From the resulting signal arriving at the cEEGrid, the electrode pair measuring the highest amplitude was found. The corresponding value was then back-projected onto the mesh grid. The result is a sensitivity map for the cEEGrid with yellow indicating the maximum amplitude, blue indicating the minimum. While this is a relative measure without realistic units, it can be seen that sources in the temporal lobe are better recognized than those in the surrounding areas.

REFERENCES

Abstract—A key aspect in EEG acquisition is the signal-to-noise ratio (SNR), i.e. the power of the brain signals relative to the power of all aggregated noise contributions. Several of the design trade-offs in wearable EEG devices influence the total SNR. This talk will revisit the aggregated noise contributions from the complete signal acquisition pipeline in order to highlight the SNR consequences of the design trade-offs that are typically at stake in the case of wearable EEG devices.

I. BIO

Preben Kidmose is professor at the Department of Engineering at Aarhus University. His research interests are within signal processing and machine learning methods for biomedical sensors and wearable biomedical devices; biomedical electrical instrumentation; biomedical sensors; modelling of electromagnetism in biological tissue; audio signal processing; and system engineering/design of medical devices. He has been one of the pioneers of the ear-EEG recording method, the instrumentation for ear-EEG and ear-EEG signal processing methods. He has 18 years of professional experience: 10 years from medical device industry and 8 years from academia.

He received the B.Sc. degree in Electrical Engineering from University of Southern Denmark (Engineering College Sønderborg Teknikum) in 1995, the M.Sc. degree in Engineering from Technical University of Denmark in 1998, and the Ph.D. degree in Signal Processing from Technical University of Denmark in 2002. From 2001 – 2011 he was employed at Widex A/S (hearing aid company), Denmark, as R&D engineer within hearing aids and medical devices. Since 2011, he has been at Department of Engineering at Aarhus University, where he is leader of the Bioelectrical Instrumentation and Signal Processing research group and the Neurotechnology Lab.

II. TALK SYNOPSIS

Although the fundamental principles for conventional EEG recording also applies to wearable EEG, the translation from the reasonably controlled environment in the lab to the unrestrained conditions in real-life settings poses several challenges. A significant part of these challenges are related to the wearable devices themselves. Whereas conventional equipment for EEG recordings in the lab are developed with a clear focus on optimizing the EEG signal quality, for wearable EEG recording there are also a number of other considerations to take into account in the design of the devices. Apart from being able to record high quality EEG, a wearable EEG device must also be comfortable to use, as unobtrusive to the daily life activities as possible, as discreet as possible, and user-friendly. Thus, in practice, there are design trade-offs between the primary objective, to record EEG, and the other attributes of the wearable EEG device.

A key aspect in EEG acquisition is the signal-to-noise ratio (SNR), i.e. the power of the brain signals relative to the power of all aggregated noise contributions from the complete signal acquisition pipeline. Several of the design trade-offs in wearable EEG devices influence the total SNR, this is in particular the case for design choices related to the electrodes and to the instrumentation amplifier. The electrode material, the size of the electrode, the surface properties of the electrode, and whether the electrode has a dry- or wet interface to the body, all influences the noise properties of the skin-electrode interface. The distance between electrodes affects both the signal and the noise. The imbalances of the electrodes effects the ability to reject common-mode noise. The current noise, the voltage noise, the input impedance and the common-mode rejection of the instrumentation amplifier also affects the noise. Finally, the interaction between the skin-electrode interface and the instrumentation amplifier also has an influence on the total SNR.

This talk will revisit the aggregated noise contributions from the complete signal acquisition pipeline to highlight the SNR consequences of the design trade-offs that are typically at stake in the case of wearable EEG devices. The aim is to provide a comprehensive overview of the noise contributions to the design engineers of wearable EEG devices. The talk will include examples from the design of dry-electrode ear-EEG recording devices.

REFERENCES

Abstract—Accurate and convenient EEG monitoring systems are in high demand. A multichannel reconfigurable EEG acquisition system with novel flexible dry electrodes is proposed in this talk. It is based on conductive and stretchable dry material and produced by 3D printing technology. Meanwhile, a portable reconfigurable 8-channel EEG acquisition system is also proposed. To verify the performance of the proposed electrodes, a comprehensive test including electrode characterization and signal quality measurement is performed in comparison with Ag/AgCl electrodes and Gold cup electrodes. Experimental results demonstrate that the proposed system satisfies the requirements of multi-channel EEG acquisition and provides a portable and comfortable way for EEG acquisition.

III. Bio

Prof. Wei Chen (M’07–SM’12) is Professor and Director of Center of Intelligent Medical Electronics at School of Information Science and Technology, Director of the Physiological Signal and Sleep platform at the Human Phenome Institute, Fudan University, Shanghai.

She received her B. Eng. degree in 1999 and M. Eng. degree in 2002 from School of Electrics and Information Engineering, Xian Jiaotong University, China. She obtained her Ph.D. degree in 2007 from the Department of Electrical & Electronics Engineering, The University of Melbourne, Australia. She worked at Bell Laboratories Germany, Alcatel-Lucent, Stuttgart, Germany as an intern in 2005. From 2007 to 2015, she was an Assistant Professor at Eindhoven University of Technology, the Netherlands. Since Oct. 2015, she has been a full professor at School of Information Science and Technology, Fudan University, Shanghai, China.

Her research interests include patient health monitoring, sleep monitoring, brain activity monitoring, smart sensor systems, wearable sensor systems, health robotics, artificial intelligence, machine learning and data fusion for healthcare, ambient intelligence, personalized and smart environment. She has published two books as the main editor and she has more than one hundred publications in prestigious journals and international conferences. She has been the supervisor for more than 15 PhD candidates and graduated 5 PhD students, among them 3 with Cum Laude. As PI and co-PI Prof. Chen successfully led more than ten projects including EU H2020, NWO/STW NL, China Minister of Science and Technology (MOST) and Shanghai Municipal of Science and Technology (SMST) projects. Currently, as PI she is the consortium leader of projects like MOST major project and SMST international cooperation project; as co-PI she is conducting SMST Major project and participating EU H2020 project. She is a Senior Member of IEEE, managing editor of IEEE Reviews in Biomedical Engineering, associate editor of IEEE Journal on Biomedical Health Informatics (J-BHI) and IEEE Transactions on Neural Systems and Rehabilitation Engineering (TNSRE).

IV. Talk Synopsis

This talk will present a multichannel reconfigurable EEG acquisition system with novel flexible dry electrodes. The novel electrode is designed to overcome the limitations of conventional wet electrodes such as skin irritation, skin preparation, and conductive gel requirements.

Firstly, the novel material and the acquisition system design will be presented. The system is based on conductive and stretchable material and produced by 3D printing technology. Meanwhile, a portable reconfigurable EEG acquisition system is proposed to overcome the drawbacks of traditional EEG acquisition system such as, large in size, difficult to configure, and complicated to use. It can be reconfigured by adjusting the gain and sampling rate.

Secondly, to verify the performance of proposed electrodes, a comprehensive test including electrode characterization and signal quality measurement is performed in comparison with Ag/AgCl electrode and Gold Cup electrode. Furthermore, the proposed EEG acquisition system with novel dry electrodes is evaluated and compared with the commercial product. The evoked EEG signals (the steady-state visual evoked potentials, SSVEP) acquisition tasks of the proposed system are also conducted. Experimental results exhibit that proposed system satisfies the requirements of multi-channel EEG acquisition and provides a portable and comfortable way for EEG acquisition.

Finally, with the high-quality sensing ability of the novel electrodes and the programmable gain amplifier of the proposed system, it can be expected to acquire the physiological signals like the electrocardiogram (ECG) and electromyogram (EMG). Furthermore, potential applications in sleep monitoring will be discussed.

References